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A linear three-dimensional model of the wind-driven ocean circulation is treated 
by boundary-layer methods. The interior flow, below the Ekman layer, differs 
from the classical gyres of Munk (1950). There is a north-eastwards transport of 
fluid from the western boundary current of the southern gyre across the latitude 
of zero wind stress curl into the northern gyre. A return flow in the Ekman layer 
preserves continuity. 

1. Introduction 
The standard method for determining the ocean currents produced by a given 

distribution of wind stress involves integrating all variables over a predetermined 
depth of the ocean and thenceforth working with volume transports in place of 
velocity components. This technique overcomes the difficulties inherent in 
dealing with a three-dimensional problem and with variable density. However, 
no insight is given into the actual variations with depth of the velocity and den- 
sity fields, and the difficulties surrounding the choice of the level of no motion 
have been discussed by Stommel (1958, chapter 3). The results obtained by this 
method consist of discrete gyres, whereas from examination of charts of mean 
ocean currents it is seen that the circulation is essentially three-dimensional 
with fluid flowing from one gyre to another, returning a t  some other depth. 
This return flow is usually assumed to be part of the thermohaline circulation. 

Stommel (1957) suggested that the circulation in a three-dimensional model 
has the same gyre structure as the vertically integrated transport model. I n  this 
paper, by considering a very simplified three-dimensional model, it is shown that 
the process of vertically integrating masks certain interesting features of the 
ocean circulation. I n  particular, we show that fluid can be transported between 
gyres and a return flow take place within the framework of a homogeneous ocean. 
Thus, in addition to the thermohaline circulation, a second mechanism exists 
for dealing with different velocity fields at  different depths. 

2. Formulation 
The model under consideration is a rectangular homogeneous ocean of uniform 

depth D on a /3-plane, with the Cartesian co-ordinate system shown in figure 1 
that  has x increasing eastwards, y northwards and z vertically upwards. The 
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corresponding velocity components are u = (u, V ,  w)  and the vertical component 
of the Coriolis parameter f = fo +By is the familiar form used in the /3-plane 
approximation. If P is the reduced pressure, vH and vv are respectively the hori- 
zontal and vertical coefficients of eddy viscosity, the momentum equation for 
steady flow is 

( 1 )  
a2U 

u . V u + f k x u  = - V P + V H V ~ U + V  1’ ~ a22 ) 

FIGURE 1. Notation. 

where k = (0, 0 , l )  and V2 = $/ax2+ a2/ay2. The assumption that vv is constant 
is reasonable except near the bottom, but we shall see that the Ekman layer at  
the bottom is unimportant anyway. Equation (1) includes the fact that the domi- 
nant Coriolis accelerations are produced by the vertical component of the Earth’s 
angular velocity. 

The system may be made non-dimensional by introducing the following new 
variables 

(X) y) = .L(x’, y‘)) z = €LZ‘, ( U )  v) = U(U’) V ! ) ,  w = EUW!, P = Uf,LP‘) 

where L is the east-west dimension of the ocean, U is a velocity scale related to 
the amplitude of the imposed surface stress, and E = D/L  is a small parameter 
indicating the shallowness of the ocean. In  non-dimensional form the components 
of (1) become 

where the primes have been dropped, the parameters R, /3*, E,, EL, are defined as 

R = UlfoL, /3* = /3L/fo, E ,  = v H / f o L 2 )  E ,  = Vv/foD2, 
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and the Coriolis parameter now has the form f = fo( 1 + p*y). The system is closed 

au av aw 
ax ay a x  

by the continuity equation 
-+-+- = 0, (5) 

The boundary conditions in non-dimensional form are as follows. The condi- 
tions at  the surface z = 0 are 

7% = aulaz = - EF* cos my, ( 6 4  

ry = avpz = 0, w = 0, ( 6 b )  

where T,, ry are the components of wind stress in the x, y directions respectively. 
At the rigid boundaries at  the bottom and on the east and west coasts, the velocity 
is zero, u = v = w = o ;  z =  -1, x = O , l .  

The north and south boundaries remain free, but we are particularly interested 
in the region between y = 0 and y = 2, latitudes at  which the wind stress curl 
is zero. 

3. Numerical values 
Five parameters B, R, p*, E,, E ,  have been introduced in the previous section 

and before further approximation can be made to the equations of motion, it is 
necessary to decide the relative magnitudes of their terms. The following are 
taken as typical values for the dimensional parameters: 

fo = 7.3 x see-l, p = 2.6 x 10-13 cm-l see-l, 

L = 2 x  108cm, D = 4 x  106cm, U = 5cmsec-1, 

vH = 7 x 106cm2sec-1, v, = 102cm2sec-1. 

The Coriolis parameters are evaluated at  latitude 15"N, and for the eddy viscosi- 
ties we have used a value for vH that was given by Arons & Stommel (1967) 
and for vv a value that is appropriate near the surface. 

Using these values, the Rossby number 

R = 3 . 4 ~  10-4. 

Hence the non-linear terms will be small compared with the Coriolis terms except 
perhaps in narrow western boundary currents where velocities are O( 100) em 
see-l. However, in this paper we shall confine our attention to viscous boundary 
layers, neglecting the effects due to the non-linear terms. The Ekman numbers are 

EH = 2.4 x E, = 8.5 x 

As these values for E,  and E, are close, we shall assume that EH/Ev N 0(1) 
when using power series expansions in terms of the Ekman numbers. Slight 
variations in the choice of eddy viscosities will only modify the solution quanti- 
tatively. The remaining non-dimensional parameters are 

8 = 2 x 10-3, p* = 0.71. 
46-2 
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The latter cannot reasonably be neglected compared with unity, and it is the in- 
clusion of this term throughout that gives rise to the interesting results. To 
summarize, the assumptions to be made are 

R N 0; EHIE,, p* N O(1); C, EH, E ,  4 1. 

4. The vorticity equation 

continuity equation (5) leads to the vorticity equations 
Neglecting the non-linear terms, cross-differentiation of (2)-(4) and use of bhe 

The method used to deal with these equations will be power series expansion 
for the dependent variables, each expansion valid in one of the regions shown in 
figure 1. These regions are: (a)  the interior away from the frictional influence of 
the boundaries a t  z = 0, 1; z = 0, - 1; ( b )  the Ekman layers of thickness O(E$) 
near z = 0, - 1 but excluding the regions O(E$) from the coasts at  x = 0 , l ;  
(c) the east and west coast layers of thickness O(E&) but excluding the regions 
O(F$) from the boundaries at  z = 0, - 1;  ( d )  the corner regions along the east 
and west coasts but within a distance O(E$) from the boundaries at  z = 0,  - 1. 
This region is only discussed in terms of continuity. 

5. The interior 
In this region, away from the frictional influence of the boundaries, the viscous 

terms in the vorticity equations will be small. Expanding formally, we write 

u = u,+E$ul+E~u2+ ..., 
= V , + E ~ U ~ + E ~ V ~ + . . . ,  
= w , + ~ & ~ l + ~ ~ ~ 2 + . . . ,  

where we have chosen the small parameter as EB for conformity in the series for 
all regions. Substitution into the vorticity equations (7)-( 9) yields for i = 1 to 5 ,  

alw4 
- (1 +P*y) -+p*vi az = 0, (10a) 

auijaz = 0, av,/az = 0. ( lob )  
For higher orders, a contribution from the viscous terms appears. The continuity 
equation must always be satisfied and is, for all i, 

au4 avi awi -+-+- = 0. 
ax ay az 
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The solution of (10) is, for i = 1-5, 

ui = UJZ, y), vi = 21&, y), (1 +p*y)wi = p*viz+ w%(x, y), (12) 

where the unknown functions must be found by matching with the flow in the 
Ekman layers and the side-wall layers. The horizontal components are independ- 
ent of depth, whereas the vertical velocity varies linearly with depth. 

6. The Ekman layers 
The upper Ekman layer 

In  this thin layer vertical gradients of the velocity components will be large. 
We introduce a magnified vertical co-ordinate [ = z/(2Ev)* and let W = (2E,)*W. 
The overbars will indicate variables appropriate to  the upper Ekman layer and 

U = u,+Ebu,+ ..., we write 

- 
v = Eo+Ej%l+..., 

W = (2ET)tW = (2Ev)*{TTo+E$W1+ ...}. 

On substituting into (7)-(9) we have, for i = 1-5, 

(1 + p*y) wig - p*zi + *(Vix<g - Uiv<g) = 0, (13) 

(1+p*y)ui<-*Gig<z = 0, (14) 

(1 +p*y)Eg + + G i ~ ~ ~  = 0, (15) 

uix + Gig + wis = 0. (16) 

and the continuity equation becomes 
- 

The suffices denote differentiation, and either (13) or (16) may be used to deter- 
mine Wi as the four equations are self-consistent. 

The zeroth-order solution may be calculated by combining (14) and (15), 
which are similar to the normal Ekman layer equations, to give 

which has the following solution bounded as [+ - 00, 

- 
uo = UOl(x, y)+uO2(x, y)exp[(1+i )B~]+~, , (x ,  y)exp[(l-i)BQ, 

% = %l(x, y) + Gdx, y) exp [(1+ i)BQ + ~ 0 3 ( ~ ,  y) exp [(I - i)BQ, 
where B2 = 1 +p*y. Matching with the interior flow ( 1 2 )  for large negative 
gives - - 

uol = u,, 2101 = 21,. 

The boundary conditions (6) at  z = 0 in terms of the new magnified variable 5; are 

au,lag = -  COST^, acOlac = 0, W, = 0, g = 0, (17) 

and they yield the conditions 

(1 + i)BGO2 + (1 - i)B?iOI = - cos my, 

(1 +i)BG,,+ (1 -i)BE,, = 0. 
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Now substitution of the solutions into (14) together with these boundary con- 
ditions gives 

- ._ l - i  - ._ l + i  
uo2 = 2w02 = - 

4B 
cos n y ,  uo3 = - 2w03 = - ___ cos ny .  

Thus the zeroth-order solution in the upper Ekman layer is 

(18) 
- cos n y  
uo = uo(x, y )  - 2~ exp (B[) (cos B[ + sin BE), 

cos n y  
exp (B[)  (cos B[ - sin B[) . - 

wo = W O @ ,  Y )  + 2B 

The vertical velocity To may be obtained from integration of (13) with respect 
to [ and substitution from (18) and (19), giving 

P* B ' T ,  = Fol(x, y )  +p*[wo(x, y )  + 2B2 cos 7ry exp (BE) cos B[ 

+5sinnyexp(Bc)cosBc-- n P T  cosnyexp(Bc)(cosB[-sinBc). 
4B 

Rewriting this expression in terms of the outer (interior) variable, we have for 

Bz9 = ( 2 E ~ ) ~ { W ~ 1 + ~ * ~ 0 ~ ( 2 E ~ ) - ~ } +  ... large negative [, 

= p * w o x +  O(E$). 

Matching with the interior flow (12) gives w$ = 0. Finally, the boundary con- 
dition (17) at [ = 0 gives 

T o , =  -= P* cos ny - in sin n y .  (20) 

T h e  lower E k m a n  layer 

In  this region the stretched co-ordinate is = ( x  + 1) (2E,)-i and the equations 
are the same as (13)-( 16) with the overbars replaced by tildes, used to denote the 
lower Ekman layer. Similarly, the solution of (14) and (15) which matches the 
interior flow for large Q is 

Go = uo(x, Y )  + Go2@, y )  exp c - (1 + i) XI + y) exp [ - (1 - i) XI, 
go = wo(x, y )  + Boz(x, y )  exp [ - (1 + i) B<] + '0"03(~, y )  exp [ - (1 - i) BC]. 

The boundary condition at  [ = O(z = - 1) is Q = v" = @= 0 and hence 

Z L ~  + Go2 + Go3 = 0, W O  + v"o2 + Go3 = 0, 

which, on substituting in (la), gives 
I -  .- 

6 0 2  = zwoz = +( -u0-iwo), Go, = -2w03 = &( -uo+ivo). 

Thus, the zeroth-order solution in the lower Ekman layer is 

c0 = u0 - exp ( - B[) (uo cos B[+ wo sin B[), 

Go = wo + exp ( - Bg) (uo sin BQ- wo cos Bg). 
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B ~ W ,  = Vo2(x, y) +,8*wo[+ exp ( - B[) (function of uo, vo), 

and the undefined function is zero if uo and vo are zero. Rewriting in terms of the 
outer variables we have, for large [, 

B28 = ,8*vo(z+ 1) + O(Eb). 

Recalling that we have already shown that w$ = 0, matching with the interior 
flow (12) gives wo = 0. Now (loa) gives awo/az = 0 and hence the continuity 
equation ( 11) gives auo/ax = 0. Thus uo is a function of y only. We shall show in $ 8 
that with the imposed wind stress (6), the interior normal velocity must satisfy 
the boundary condition at  the east coast; that is, u = 0 at x = 1 and uo = 0 
for all x, y. 

We have shown that there is no zeroth-order flow in the interior, and using the 
boundary condition at  1 = 0,  we can show that Vo2 = 0. Hence there is no zeroth- 
order flow in the lower Ekman layer. The only zeroth-order flow is in the upper 
boundary layer, which is a conventional Ekman layer that decreases in thickness 
with increasing latitude due to the presence of the (1 + ,8*y). The vertical ve- 
locity out of the upper layer (Ekman suction) will produce an O(Eb) flow in the 
interior, as we shall see in the next section. 
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The integral of (13) with respect to [ gives 

7. Higher-order terms: the interior solution 
For the first- and second-order terms the calculation of $6 is followed with the 

exception that the boundary conditions at the surface have the simpler form 

a q a z ,  a q g ,  mi = o (< = 0). (21) 

It is found that all first- and second-order terms are zero, as could have been 
anticipated as we expect a power series in Eb in the Ekman layers. However, 
the third-order, O(E$), flow is non-zero because the function mol now appears in 
the matching condition. As for the zeroth-order terms, the solution which matches 
with the interior flow for large negative [ is 

u3 = u3 + ~ 3 2  exp [( 1 + i) BE] + u~~ exp [( 1 - i) BE], 
v3 = v3 + G~~ exp [(I + i)B[] + z~~ exp [(I - 4BQ. 

The boundary conditions (21) at the surface < = 0, together with the relations 
obtained by substituting in (14), give 

- 

- - - - 
u32 = u33 = v32 = WuQ3 = 0. 

Thus the flow in the upper Ekman layer is just the zeroth-order Ekman flow plus 
the O(Eb) interior flow. Equation (13) with i = 3 gives, on integration with 
respect to c, 
and the boundary condition at 
variables we have, for large negative [, 

B2 w3 = m31(x? y) + 5, 
= 0 implies that w,, = 0. Rewriting in outer 

B2W3 = B2(2EV)4( wo + E$ m1 + . . .) 
= ( 2 E V ) ~ w o l + E ~ ~ * V 3 x + O ( E $ ) .  



728 J .  A .  Johnson. 

The outer (interior) solution, from (12), is 

B2w = E ~ ( / ~ * V , Z  + w:) + O(E$), 

and matching gives w: = w,,2/2.  

The third-order Ekman layer solution has the same form as the zeroth-order 
solution as the boundary conditions are unchanged. The appropriate solution is 

lii, = u3 - exp [ - B[] (u3 cos B[+ u3 sin B[) ,  
ij3 = v3 + exp [ - BC] (u3 sin B[ - u3 cos Bg) , 

B2P3 = @32(x, y) +P*u3C+ exponential terms, 

where @,, may be found from the boundary condition a t  [ = 0. Rewriting in 
outer variables, for large 6 we have 

B2G = E$/3*v3(z + 1) + O(E$). 

Matching with the interior solution (22) gives 

using (20) and ( 2 3 ) .  Now the continuity equation and (1Oa) gives 

Hence 

and 

I n  $8 we show that the interior normal velocity must satisfy the boundary 
condition a t  the east coast. Thus the function U3(y) is chosen so that u3 = 0 
a t  x = 1, and then the interior solution is 

B2 = 1 +/3*y, 

where the fact that the fourth- and fifth-order terms can be shown to be zero has 
been included. 

It is seen in (28) that the vertical velocity decreases linearly with depth to 
zero a t  the bottom. Thus to this order there is no flow into the lower Ekman 
layer whose only purpose is to smooth the horizontal velocity to zero. It is 
clearly of minor importance compared with the upper layer. These general results 
were obtained by Robinson (1965, chapter 17). Although in the dimensionless 



Three-dimensional model of wind-driven ocean circulution 729 

variables above, w has the same order of magnitude as the horizontal velocity 
components, i t  should be recalled that the scaling for w included the small 
parameter E .  Consequently the actual dimensional vertical velocity is extremely 
small (a few cm per day using the values in $3) .  However, the vertical transport 
over the whole ocean is a significant part of the motion. 

The most interesting result, due to the inclusion of the /?* term throughout is 
the fact that v and w are not zero where the wind stress curl is zero. The interior 
flow is shifted southward relative to the wind stress field, and can be examined 
more easily if (27) is rewritten as 

The phase shift southward is tan-lP*/n( 1 + p*y), which varies from about 
n/14 at y = 0 to about ~ 1 3 6  at y = 2. An explanation of this effect is now given. 
For a uniformly rotating fluid, the Ekman layer suction (or w) is zero where the 
wind stress curl is zero. On a /?-plane with constant east wind stress (that is 
zero curl) there will be a flow out of the Ekman layer for the northward Ekman 
transport as the thickness of the layer decreases with increasing latitude. Conse- 
quently for a /?-plane with variable wind stress, the zeros of v and w in the in- 
terior cannot occur at  latitudes of zero wind stress curl. Moreover as the transport 
of the Ekman layer due to the /?-effect decreases with increasing latitude whereas 
the transport associated with the wind stress is periodic, we expect to find that 
the phase shift decreases with increasing latitude. 

Finally, as the u velocity component remains in phase with the wind stress, 
there will be a north-south asymmetry in the interior flow as will be seen later 
in figure 2. The structure of the circulation produced by these results will be- 
come clear after the flow in the west coast boundary layer has been examined. 

8. The east and west coast boundary layers 
The interior flow cannot satisfy the conditions of zero velocity at  the east and 

west coasts and boundary layers will be required. As the wind stress was chosen 
so that there is no east-west transport in the upper Ekman layer, there will not 
be any upwelling or sinking at  the coasts. A t  the east coast we shall find that the 
interior normal velocity u is zero and that a weak boundary layer is required to 
bring the O(E$) tangential flow to zero at  x = 1. The structure of this boundary 
layer will be simple exponential decay of the interior flow. This layer would be 
more interesting if a different wind stress were used which required the layer to 
remove fluid from or supply fluid to the Ekman layer. 

At the west coast the situation is complicated by the need for a substantial 
north-south return flow to compensate the slow drift in the interior. This return 
flow of O(E&) will take place in a layer of thickness E L  which also smooths the 
normal velocity u to zero at  x = 0. In  addition, as on the east coast, a weaker 
layer is required to bring the O(E$) tangential flow to zero, but will not be 
considered here as it is not involved in net transport of fluid. 
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West coast boundary layer 

A circumflex will be used to denote variables in the west coast boundary layer 
and the following new variables are introduced 

7 = E$x, O = Ej&. 

Expanding in power series as above but this time emphasising the dependence 
on the small parameter E,, we have 

0 = E ~ + O ~ + E ~ O ~ + . . . ,  
0 = E&8,+E@,+ ..., 
8 = EL@,+ ..., 
P = E L F l +  .... A 

As the horizontal velocities in the interior are independent of x and as there is no 
flow from the Ekman layer into this layer, the vertical velocity in this layer must 
be the same order as in the interior. Substitution into the linear terms of (2)-(5) 
and retention of the lowest order terms gives 

(1  +P*Y)iU l̂ = P,,, 
(1+P*y)O1 = -Plv+a,,,, 

u,, + OIY = 0. 

h 

o =  -P 12 7 
h 

(30) 

Elimination of p1 and 0, gives the following equations, 

a1,,4-p*al = 0, a,, = 0, (31) 

and the solution for a,, which tends to zero as 7 + co is 

a1 = fi,,(Y) exp (wP*") +3,2(Y) exp (w"*+,), 

a11+O12 = 0. 

(32) 

where w = &( - 1 + i 43). The boundary condition at 7 = 0 gives 

Proceeding now to the variable O1 which has to match with the interior flow we 
have, from the continuity equation (30), that 

(33) 
1 d3,, 

and thus 0, = 0,,(y) - w2p"+ d y  {w exp (wp*") - exp (w2P**~)}. 

So for large 7, 

= E&O,l(y) + O(&). 

The interior solution, written in terms of inner (boundary layer) variables, 

a = E&O1+ ... 

becomes 
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Therefore matching gives 

(34) 

The boundary condition on 0, at 7 = 0 is, from (33 ) ,  

which implies that 

and 

where 8,, is a constant. Thus, from (32) - (34) ,  

which brings the interior east-west flow smoothly to zero at the west coast. 
The remaining constant is determined by ensuring that the volume flux into 
the boundary layer equals the return flux in the layer. As the model has unit 
depth, the volume flux into the boundary layer between the latitudes y = 0 and 

n2 ll 
y = $ i s  

-u(O, y,x)dy = (iEv)*P,~o!zcosnydy = ( $ E v ) * ~ .  P 

The northward volume flux in the boundary layer past the latitude y = 4 is 

(36) 

Hence continuity is only satisfied if a13 = 0 ,  and the return flow along the west 

East coast boundary layer 

Turning now to the east coast boundary layer, the appropriate stretched co- 
ordinate is f = (1 - x) Ej$, and the equations for 8, corresponding to (31) are 

iU1qa;i+p*a1 = 0, a,, = 0. 
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The solution that is bounded as f --f 00 is 

a, = G,(y) exp ( - /3*") 

and the continuity equation gives 

So for large 7, a = E&O,+ ... = E~$,+o(E&). 

The interior solution (25), written in terms of the inner variable, is given by 

2 1-Eh- 
U = E $ ( " ' ~  " 2  .J €Iv) cos7rry + + . . . 

n2 cos ry 
P* 4 2  

= E$ ( -~ + U3( y )) + O( Ei ) .  

Therefore matching gives 
o - -  E ,  4 n2cosny 

- (EH)  [ /3* J2 + U3(y)) 

and the boundary condition on f = 0 for u and 21 gives 

GE = 0 ,  O E  = dOE/dy = 0. 

Therefore 

showing that the interior velocity u must satisfy 
dition. 

the east coast boundary con- 

9. Discussion 
The west coast solution obtained in (35) and (37) closely resembles the inte- 

grated solution given by Munk (1950) and includes an offshore counter current 
with transport of magnitude 17 o/o of the main current. There is no phase shift 
in this current and therefore it does not form, with the interior flow, the simple 
closed gyres that Munk obtained. As shown in figure 2, some fluid from the 
west coast current in the southern half-basin moves out of the southern gyre and 
enters the northern gyre, thereby producing a flow from south-west to north-east. 
There is an apparent lack of continuity until it  is realized that the northern gyre 
is a region of upflow into the Ekman layer with a corresponding downflow out 
of the Ekman layer into the southern gyre. It remains to verify that the transport 
from the south-west to the north-east is indeed returned by the Ekman transport 
in the upper layer. The flow out of the region 0 < y < 1 into the interior of 
adjacent regions is, from (27), 
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The downflow out of the Ekman layer in the region 0 < y < 1 is, by (28), 

cos ny 

y=2 
Yi 

y-1 
Y2 

y = o  

Yl 

X=O x = l  

B 
FIGURE 2. Plan view of the interior flow. The velocity components v, w are zero on the 
lines y = yl, yz, y3. On the right is shown the surface stress distribution. Downflow out 
of the Ekman layer occurs in the region y1 < y < yz. Upflow occurs in the region 
Y2 < Y < Y3. 

thus satisfying continuity. Although the phase shift a t  latitude y = 1 is small, as 
the wind stress has a maximum there, the actual transport north-eastwards is 
appreciable. The fraction of the west coast current that moves north-eastwards 
is, from (36) and the second term of (38), 

which corresponds to about 13 yo, using the value p* = 0.71. 

(1 +/?y/np*-,  
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Clearly in the standard method of integrating vertically and dealing with 
volume transports, these results could not be foreseen as there is no net transport 
across the latitudes of zero wind stress curl. Thus the variation of the Coriolis 
parameter with latitude provides a mechanism for producing a drift of fluid 
north-eastwards across the ocean, a feature of the North Atlantic circulation. 
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